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A B S T R A C T

Background and Objective: Despite significant investments in the normalization and the standardization
of Electronic Health Records (EHRs), free text is still the rule rather than the exception in clinical notes.
The use of free text has implications in data reuse methods used for supporting clinical research since the
query mechanisms used in cohort definition and patient matching are mainly based on structured data and
clinical terminologies. This study aims to develop a method for the secondary use of clinical text by: (a) using
Natural Language Processing (NLP) for tagging clinical notes with biomedical terminology; and (b) designing
an ontology that maps and classifies all the identified tags to various terminologies and allows for running
phenotyping queries.
Methods and Results: Transformers-based NLP Models, concretely pre-trained RoBERTa language models,
were used to process radiology reports and annotate them identifying elements matching UMLS Concept Unique
Identifiers (CUIs) definitions. CUIs were mapped into several biomedical ontologies useful for phenotyping
(e.g., SNOMED-CT, HPO, ICD-10, FMA, LOINC, and ICPC2, among others) and represented as a lightweight
ontology using OWL (Web Ontology Language) constructs. This process resulted in a Linked Knowledge Base
(LKB), which allows running expressive queries to retrieve reports that comply with specific criteria using
automatic reasoning.
Conclusion: Although phenotyping tools mostly rely on relational databases, the combination of NLP and
Linked Data technologies allows us to build scalable knowledge bases using standard ontologies from the
Web of data. Our approach enables us to execute a pipeline which input is free text and automatically maps
identified entities to a LKB that allows answering phenotyping queries. In this work, we have only used Spanish
radiology reports, although it is extensible to other languages for which suitable corpora are available. This
is particularly valuable in regional and national systems dealing with large research databases from different
registries and cohorts and plays an essential role in the scalability of large data reuse infrastructures that
require indexing and governing distributed data sources.
1. Introduction

1.1. Problem

Secondary use of clinical data has seen an important development in
the last decade [1]. Both national and international initiatives to enable
data reuse across institutions have received significant funding. Ex-
amples are: the National Patient-Centered Clinical Research Network,
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E-mail address: luis.marco.ruiz@ehealthresearch.no (L. Marco-Ruiz).

which has accumulated data from 80 million patients and several hun-
dred hospitals since 2013 [2]; the Observational Health Data Sciences
and Informatics, which has performed clinical studies at an interna-
tional level encompassing more than 600 million patient records [3,4];
and the European Health Data and Evidence Network, which aims to
build a federated data warehouse of clinical data [5]. These initia-
tives have played a significant role in designing clinical studies by
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allowing multi-center evaluations and setting the foundations for effec-
ive electronic phenotyping. However, Real World Data (RWD) poses

significant challenges due to its variability, context-dependent jargon,
missing data, and ambiguity [6]. These challenges become exacerbated
in clinical notes expressed as free text [7], limiting the possibility
of performing effective electronic phenotyping over Electronic Health
Records (EHRs) [6,8]. For this reason, the majority of data reuse in-
frastructures focus on parts of the EHR that are structured (e.g., patient
summaries) or normalized cohorts databases, but they do not offer the
amount of detail that personalized medicine requires for interpreting
highly granular information items (i.e., performing Deep Phenotyping).
Deep Phenotyping, understood as ‘‘precise and comprehensive analysis
of phenotypic abnormalities in which the individual components of the
phenotype are observed and described’’ [9], requires the identification
and detailed interpretation of clinical records in the EHR. Some records,
such as medications, -Omics data, or laboratory tests, are structured
and coded with international terminologies. However, other parts of
he EHR, such as radiology reports, are often expressed as free text or
emi-structured text and require Natural Language Processing (NLP) to
xtract the wealth of information in the EHR. Previous studies have
sed NLP to tackle this task [10–12], but they did not close the data

reuse loop by allowing running phenotyping queries over the notes
processed with NLP.

In this study, we propose a methodology to advance the reuse
f free text radiology reports in Spanish by using NLP transformer
echnology combined with biomedical ontologies and Linked Data. To

that end, our methodology expresses clinical terms identified with NLP
as an ontology that allows for running phenotyping queries based on
the concept model of SNOMED-CT. This allows identifying granular
entities needed for Deep Phenotyping and facilitates the Extraction
Transformation and Load (ETL) for secondary use of clinical notes.

The paper is organized as follows. The rest of this section presents
the state of the art in NLP, focusing on the biomedical domain, and
highlights the novelty of the presented methodology. Section 2 de-
scribes the whole system, from the clinical report to the built ontol-
ogy. Section 3 describes the dataset, use cases, transformer models,
nd the results of the NLP models. Section 4 presents the ontology-

learning pipeline and the ontology built from free text. Finally, Sec-
tion 5 contains the discussion, the comparison with similar works, and
he limitations of this study.

1.2. What is already known

The representations of words or sequences of words (parts of a
sentence, whole sentences, paragraphs, or documents) are a funda-
mental part for the syntactic and semantic text processing. In 2013,
Mikolov et al. [13] introduced the concept of word embedding, which
represented a major change in how most language processing tasks
were approached, and brought significant improvements. Yet, in recent
years, the development of the concept of contextual vector models
of words (contextual embeddings) meant another critical leap in the
results of the area.

In 2018, a new language representation model called BERT (Bidi-
rectional Encoder Representations from Transformers) [14] was intro-
duced. BERT’s key technical innovation was applying the bidirectional
training of Transformers (an attention mechanism that learns contex-
tual relations between words or sub-words) to language modeling. The

ransformer encoder processes the entire sequence of words at once.
his characteristic allows the model to learn the context of a word
ased on its surroundings (both left and right) words. BERT is designed
o pre-train deep bidirectional representations from unlabeled text by

joint conditioning on both left and right context in all layers. As a
result, the pre-trained BERT model can be fine-tuned with just one
additional output layer to create state-of-the-art models for a wide
range of classification tasks. The use of pre-trained language models has

15,16].
been shown to be very effective in improving many NLP tasks [

2 
Since the BERT proposal, numerous advancements have been made
in pre-trained language models, especially in developing models tai-
lored to specific languages and domains [17]. One such model is
RoBERTa [18], which builds on BERT’s language masking strategy,

herein the system learns to predict intentionally hidden text sec-
tions within otherwise unannotated language examples. RoBERTa mod-
ifies key hyperparameters in BERT, including removing BERT’s next-
sentence pre-training objective, and training with much larger mini-
batches and learning rates. These adjustments allow RoBERTa to im-
prove on the masked language modeling objective compared with BERT
nd leads to better downstream task performance.

However, challenges persist when applying models like RoBERTa
to non-English languages, particularly Spanish, due to a lack of high-
quality, domain-specific Spanish corpora and the linguistic complexity
of Spanish itself. Spanish has rich morphological features, such as
gender and number inflections, which complicate model training and
adaptation. In recent years, collaborative initiatives such as the IberLEF
shared tasks [19,20] have promoted the development of resources
for Spanish biomedical NLP, but much work remains to achieve the
performance levels seen in English-language models. Recent studies
have adapted RoBERTa for Spanish biomedical applications. For in-
stance, models used in [21,22] have shown promising results by fine-
tuning pre-trained RoBERTa-based models on Spanish clinical data.
Notably, these models outperform earlier approaches in some biomed-
cal tasks, demonstrating the effectiveness of RoBERTa’s architecture
hen adapted to Spanish clinical text. Similarly, Carrino et al. [23,24]

utilized Spanish RoBERTa-based models for biomedical tasks, achieving
better results than other pre-trained models.

The General Language Understanding Evaluation (GLUE) [25] ben-
chmark was proposed in the NLP area. It consisted of a benchmark
of nine diverse Natural Language Understanding tasks, an auxiliary
dataset for probing models for understanding of specific linguistic
henomena, and an online platform for evaluating and comparing
odels. GLUE has successfully promoted the development of language

representations of general purpose. To facilitate research on language
representations in the biomedicine domain, the Biomedical Language
Understanding Evaluation (BLUE) [26] benchmark has also been pro-
posed. The benchmark consisted of five tasks with ten datasets covering
iomedical and clinical texts with different dataset sizes and diffi-
ulties. GLUE and BLUE provide several tasks on which to compare
odels, and different labeled corpora to do fine-tuning and testing

hese models. However, it should be noted that all these corpora are
n English.

In the biomedical domain, among recent works, PadChest [27] was
the first large-scale dataset of chest X-rays and associated reports that
implemented deep learning methods for labeling Spanish radiology
reports at scale. Reports were labeled with 293 medical entities mapped
to the standard Unified Medical Language System (UMLS) terminology
and organized as a hierarchical taxonomy. The primary purpose of
PadChest was to build a large annotated X-ray dataset to enable the
training of supervised deep learning models in medical imaging. Since
its publication [28], the dataset has been downloaded 3504 times
from BIMCV, from 50 different countries. Its users include private and
public health organizations and academic publications making using
it [29,30].

Although studies such as the ones aforementioned have used Ma-
chine Learning techniques to identify clinical concepts in free text [31],
Machine Learning has not been extensively used for mapping other
large corpora into multiple biomedical ontologies such as SNOMED-
CT, the Human Phenotype Ontology (HPO), or the Foundational Model
of Anatomy [10]. In the past, NLP methods outside Machine Learn-
ing were used to map clinical free text to terminologies. One of the
pioneering works using NLP to map clinical text into a controlled vo-
cabulary was described by Friedman and colleagues [32]. Aronson [33]
developed the MetaMap system to map medical text to the UMLS
Metathesaurus using a combination of rules and several string-matching
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methods. Hammami et al. [34] recently used a rule-based NLP system
to tag pathology reports in Italian with ICD-O-M. These methods were
successful in mapping free text to terminologies, but the mappings
produced were lists of terminology codes not formally expressed as an
ontology (i.e., logic model). This translates into the need to directly
query for the specific terminology codes (sometimes hundreds or even
thousands) rather than using the relationships conveyed in biomedical
ontologies to execute expressive queries (subsumption, equivalence,
part of, etc.). For example, query for those radiology reports refer-
ring to some kind of neuropathy and retrieve all the reports tagged
identifying a specific type of neuropathy (Myasthenia gravis, Iatrogenic
neuropathy, Lipoma of nerve, etc.).

1.3. What this paper adds

This paper presents a methodology that uses transformer-based
ethods to process clinical reports in Spanish and express the extracted

ntities as an ontology compliant with Linked Data Principles. The in-
ovation of this methodology is threefold. First, it leverages transform-
rs technology on radiology reports written in Spanish and analyzes
heir performance over clinical reports, which include COVID tags. Sec-
nd, the extracted entities are directly mapped to 12 biomedical termi-
ologies using SNOMED-CT as the reference one. Third, all terminology

mappings are expressed as a Linked Knowledge Base (LKB) allowing for
using Linked Data technologies to run phenotyping queries.

2. The NLP-LKB system

The Gobierno de Canarias and the Generalitat Valenciana, through
the Servicio Canario de la Salud and the Conselleria de Sanitat Univer-
sal i Salut Pública, respectively, considered innovation as an essential
tool for improving health care. Consequently, the ‘‘Big Data Person-
alized Medicine’’ (MedP) project was launched [35], processed under
the second call of the FID Salud Program, to support clinical decisions
aimed at each individual patient with particular attention to chronic
athologies, and also creating a new patient interface supported by
rtificial Intelligence. The MedP Project believes that innovation is fun-
amental in improving medical care. The FID Program is a government
ool funded with FEDER pluri-regional funds for the period 2014–2020,
nd its objective is to promote innovation through the demand for
nnovative solutions by public administrations.

Within the framework of this project, we have worked on a use case
hose main objective was the application of NLP in the domain of clin-

cal reports. In particular, the goal was the knowledge extraction and
utomatic labeling in various terminologies (including SNOMED-CT
oding) from conventional chest radiology reports.

A scheme of the system is shown in Fig. 1. As illustrated, the system
processes clinical reports written in Spanish and expresses the extracted
entities as an ontology compliant with Linked Data Principles. This
figure depicts an example of two reports processed through the NLP
stages (see 1), terminology mapping (see 2), and ontology development
to create the LKB (see 3). As shown in the figure, the output of the NLP
stage (1) is the set of UMLS Concept Unique Identifiers (CUIs), to which
the text segments were classified. In stage (2), using the set of CUIs,
mappings among several terminologies of interest (e.g., HPO, FMA,
ICD10 etc.) are defined. In stage (3), these mappings are processed
to define a LKB supporting phenotyping queries over the mapped
concepts.

3. The natural language processing module

The problem can be stated as follows: given a clinical report in Span-
sh, the objective is to automatically obtain the sequence of labels that
xplains the report in terms of radiographic findings and differential

diagnoses. For example, given the report (in Spanish):
 /

3 
Fecha: 22/03/2020
Juicio clínico: valorar evolución radiológica neumonía por covid 19. En
el momento actual se visualiza discreto aumento de la condensación
pulmonar a nivel del campo medio derecho., Ligero empeoramiento
radiológico.

From this free text clinical report, the system automatically extracts
he following labels: ‘‘COVID-19’’, ‘‘consolidation’’, and ‘‘pneumonia’’.
here is a 1-to-1 correspondence between labels and CUIs, therefore
he sequence of CUIs (in the same order that the labels) that explains
he clinical report is: C5203670, C0521530, and C0032285.

The task comprises three steps:

1. Preprocessing: Cleaning the report and extraction of the individ-
ual sentences.

2. Obtain the sequence of labels for each sentence.
3. The result is the union of the obtained sequence of labels for

each sentence.
In order to obtain the sequence of labels for each sentence (step 2),

 multi-label classifier is trained. Multi-label classification is a variant
of the classification problem where multiple labels may be assigned to
each instance. In our case, the instances are the sentences extracted
from the clinical reports, and the labels are radiographic findings
and differential diagnoses. The description of the set of predefined
labels is presented in the next section. The multi-label classifier is a
transformer-based model, described in Section 3.2.

3.1. Materials

A new dataset, comprising sentences extracted from biomedical
eports in Spanish, was built to train our classification models. Those
iomedical reports came from two different corpora, PadChest and
IMCV COVID-19, described below.

PadChest is a publicly labeled large-scale, high-resolution chest X-
ay dataset, and associated reports written in Spanish [27]. This dataset
ncludes more than 160,000 images obtained from 67,000 patients.
hysicians developed PadChest by manually reviewing and identifying
adiological findings from 22,120 unique sentences to the concepts
hat best identified the finding semantics in UMLS. Expert physicians
anually annotated 27% of the reports, and the remaining reports were

abeled using a supervised method based on a recurrent neural network
ith attention mechanisms. This resulted in a corpus made of multi-

abeled sentences and reports where each radiological entity is mapped
o one UMLS CUI. Radiological entities were: 174 different radiolog-
cal findings, 19 differential diagnoses, and 104 anatomic locations,
rganized as a hierarchical taxonomy and mapped onto standard UMLS
erminology. A detailed description of the development of PadChest is
vailable at Bustos et al. [27], and it can be downloaded from https:
/bimcv.cipf.es/bimcv-projects/padchest/.

The BIMCV COVID-19 dataset is a large open multi-institutional
dataset that provides the open scientific community with data of
clinical-scientific value that will help the early detection and evolution
of COVID-19 [28]. It is an annotated dataset that contains chest X-
ray images (CR and DX) and computed tomography (CT) imaging of
patients with COVID-19 and no COVID-19 patients. Their radiological
reports (in Spanish) are also attached, along with their radiological
findings (the same 174 labels as PadChest) and locations, pathologies,
DICOM metadata, Polymerase chain reaction, Immunoglobulin G, and
Immunoglobulin M diagnostic antibody tests. The findings have been
mapped onto standard UMLS terminology, covering a broad spectrum
of thoracic entities. Two new labels for diagnoses are added, ‘‘COVID-
19’’ and ‘‘COVID-19 uncertain’’. In addition, 23 sample images were
annotated by expert radiologists to include semantic segmentation
of radiological findings. The dataset can be downloaded from http:
/bimcv.cipf.es/bimcv-projects/bimcv-covid19/, and it is constantly

https://bimcv.cipf.es/bimcv-projects/padchest/
https://bimcv.cipf.es/bimcv-projects/padchest/
https://bimcv.cipf.es/bimcv-projects/padchest/
http://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
http://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
http://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
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Fig. 1. Stages of the methodology: NLP, terminology mapping, and ontology development.
l
T

w

updated with new samples. At this time (second iteration), BIMCV
COVID-19+ dataset comprises 7377 CR, 9463 DX, and 6687 CT studies.

Both publicly available datasets, PadChest and BIMCV COVID-19,
ere used to build a new dataset, called Chest+COVID, of biomedical

reports in Spanish, choosing the manually annotated reports from both
datasets for more than 26,000 reports. These reports were preprocessed
to extract sentences, resulting in 28,128 sentences after eliminating
duplicates. A total number of 299 labels appeared in the dataset (174
radiographic findings, 19 differential diagnoses, and 104 anatomic
locations from the PadChest dataset, and the two new labels included
in BIMCV COVID-19). The anatomic locations were extracted by us-
ing regular expressions, and the remaining 195 labels were extracted
with transformers. The Chest+COVID dataset was stratified random
sampling and split into training (25,315 sentences), validation (1,406
sentences), and test (1,407 sentences) partitions. Some statistics are
shown in Table 1. A histogram of the most frequent labels in each
artition is shown in Fig. 2. Specifically, the histogram accounts for

the 80 labels (out of 195) with more samples in the training partition.

3.2. Methods

The Chest+COVID dataset was used to fine-tune a transformer
based on RoBERTa architecture [18], for the multi-label classification
task. In particular, we used the so-called RoBERTa-base-biomedical-
clinical-es model [23], trained by the Barcelona Supercomputing Center
under the Plan de Impulso de las Tecnologías del Lenguaje of the
Spanish Government. The RoBERTa-base-biomedical-clinical-es model
is a biomedical pre-trained language model for Spanish. It is ready-to-
use only for masked language modeling to perform the Fill Mask task
4 
Table 1
Statistics of the biomedical Chest+COVID dataset: the number of sentences, words, and
abels, detailing the total and the average number of words and labels in the sentences.
he vocabulary is composed of 5,815 words.

Sentences Words Labels

(total) (average) (total) (average)

Training 25,315 263,999 10.43 32,989 1.30
Validation 1,406 14,617 10.40 1,847 1.31
Test 1,407 15,011 10.67 1,849 1.31

Total 28,128 293,627 10.44 36,685 1.30

(predicting which words should replace a mask, a gap in a sentence).
However, it is intended to be fine-tuned on downstream tasks such as
Named Entity Recognition or Text Classification. Our goal is to fine-
tune this model for multi-label classification of the sentences extracted
from biomedical reports and our set of 195 labels. The selection of
the pre-trained RoBERTa-base-biomedical-clinical-es Spanish language
model was primarily motivated by its use of the RoBERTa model,

hich is considered state-of-the-art for many NLP tasks in languages
such as English. Furthermore, in the case of Spanish, previous research
has compared this model with other language models, such as those
discussed in [23,24]. It concluded that using pre-trained models specific
to the biomedical domain leads to the best results for various NLP tasks
in biomedicine. Several other studies have reached similar conclusions
for English [36].

The training dataset for the RoBERTa-base-biomedical-clinical-es
model comprises various biomedical corpora in Spanish, compiled from
publicly available corpora and trackers, and a clinical dataset from
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Fig. 2. Histogram of the 80 most frequent labels (out of 195) in training, detailed for each partition of the Chest+COVID dataset.
more than 278,000 documents and clinical notes. In order to obtain
a high-quality training dataset while preserving the idiosyncrasies of
clinical language, the cleaning pipeline has been applied only to the
biomedical dataset, keeping the clinical dataset uncleaned. Essentially,
the cleaning operations used are: sentence separation, language de-
tection, filtering of poorly constructed sentences, removal of duplicate
content, keep the limits of the original document.

The biomedical corpora were concatenated, and additional global
deduplication was applied among the biomedical corpora. Finally, the
clinical dataset was concatenated with the clean biomedical dataset,
resulting in a medium-sized biomedical-clinical dataset for Spanish
composed of more than 1,000 millions tokens. The training partition
was tokenized using a byte version of Byte-Pair Encoding used in
the original RoBERTa model with a vocabulary size of 52,000 tokens.
Then, the masked language model was re-trained at the subword level
following the approach used for the base model of RoBERTa with the
same hyperparameters proposed in the original work. All the details of
the pre-trained RoBERTa model can be found at: https://huggingface.
co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es.

As stated before, the RoBERTa-base-biomedical-clinical-es model
was fine-tuned by using the Chest+COVID dataset to train a multi-
label transformer classifier to assign the corresponding set of labels
to each sentence extracted from the clinical reports. Specifically, our
model consisted of 12 transformer layers, each with 768 hidden units
5 
and 12 attention heads. The final layer was a fully connected (dense)
layer with a Tanh activation function, allowing the model to perform
multi-class, multi-label classification. This setup enables the model to
assign multiple labels to each input sentence. In total, the model has
125, 978, 112 parameters, allowing for a robust and scalable classifica-
tion process. The model can be downloaded on our Hugging Face page
(at ‘‘https://huggingface.co/ELiRF/Chest-COVID/’’).

3.3. Experimentation and results

The NLP module assigns some labels (out of a set of 195 labels) to
each report, but the classification process is done at the sentence level.
During inference, the model classifies the report sentences. Sentence-
level predictions are then combined to obtain the label sequence of a
complete report, keeping in mind that some classes, such as ‘‘normal’’ or
‘‘exclude’’, are exclusive and are eliminated in case the model predicts
them together with any other label. For this reason, both the training
of the model and the evaluation of its performance were done at the
sentence level. In the following subsections, the training strategy of the
classification models and the evaluation of their performance on the
test partition are discussed.

3.3.1. Experimentation
The classification task addressed in this work is challenging due to

the large number of labels and the imbalanced distribution of these

https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es
https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es
https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es
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Table 2
Hyperparameters considered in the optimization process.
Hyperparameter Values considered

hidden_dropout [0.05, 0.1]
attention_probs_dropout [0.05, 0.1]
num_train_epochs [100, 150]
learning_rate [2e−5, 1e-4]
batch_size {16, 32}
weight_decay [0.001, 0.01]
lr_scheduler_type {constant, linear}

labels. Such imbalance typically causes the model to focus primar-
ly on classes with the highest number of samples, often neglecting
hose that are rarely encountered during training. To mitigate this
ssue, we selected the macro F1-score as the objective function for
he fine-tuning process. This metric averages the F1 scores of all

classes equally, disregarding their sample frequency, thus encouraging
balanced performance across classes.

For model fine-tuning, a hyperparameter optimization was per-
formed to identify optimal values that maximize the macro F1-score on
the validation set. We conducted a total of ten optimization runs: five
with a linear learning rate scheduler and five with a constant learn-
ing rate scheduler. The Optuna hyperparameter optimization frame-
work [37] was used for this purpose, as it provides efficient searching
nd pruning algorithms. Table 2 details the parameters subject to
ptimization. The other hyperparameters of the base model (such as the

number of attention heads per layer, number of layers, feed-forward
layer dimensionality, and the dimensionality of 𝑄, 𝐾, and 𝑉 projec-
tions) were kept unchanged. Complete details for these parameters can
be found in the base model’s configuration file at https://huggingface.
co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/blob/main/con
fig.json. The loss function used was binary cross-entropy, calculated
etween the reference labels and the probability predicted by the model
or each label.

The results on the validation set during the fine-tuning showed
that the runs that used a linear scheduler achieved better results than
those that used a constant scheduler. For this reason, we focused the
analysis on the five runs with a linear scheduler for the learning rate
‘‘lr_scheduler_type=linear’’). The values obtained by these five runs
ere relatively similar.

The most relevant hyperparameters of each run are shown in
Table 3. The selection criteria for the best epoch of each run was the
macro F1-score on the validation partition. That is, for each run, the
epoch that maximized the result of the macro F1-score on the validation
set was chosen. Table 4 shows the macro averaged results of the best
epoch of the five runs on the validation set in terms of precision, recall,
and F1-score. Run-3 is the model which obtained the maximum value
for macro F1-score on the validation set (a value of 0.6996 at epoch
94).

3.3.2. Results
After fine-tuning was completed and the hyperparameters were

optimized, the best model was evaluated on the test set. Table 5
presents the performance metrics (precision, recall, and F1-score) of
the best run at its optimal epoch. We assess three different averaging
methods: micro averaging (assigns equal weight to each sample), macro
averaging (assigns equal weight to each label), and weighted averaging
(weights each label based on support). The macro averaged measures
were obtained by averaging on the 195 labels which appeared in the
training partition, while only 151 did appear in the test partition. As
stated above, the evaluation is conducted at the sentence level, as both
training and ground-truth labeling were performed at this granularity.

The model’s macro-averaged results on the test set are consistent
ith those observed during fine-tuning. As is typical in multi-label

lassification tasks with substantial class imbalance, the values for
acro averaged measures are lower than those for micro or weighted
6 
averaged values. It is important to note that macro results are computed
by averaging over all classes in the task, regardless of whether they
appear in the test partition or are simply hypothesized by the model.

To better understand how class imbalance impacts model perfor-
mance, we conducted a detailed analysis of the model’s performance
across different label frequency groups. Fig. 3 illustrates the evolution
of micro and macro metrics as a function of label frequency, with labels
ordered by their occurrence in the training set. This figure also shows
the number of test samples associated with each label.

This analysis reveals a noticeable drop in macro metric performance
after the 100 most frequent labels. Consequently, model performance
was evaluated using three specific label sets: (1) the 100 most frequent
labels in the training set, (2) the remaining, less frequent, labels (95
labels), and (3) labels present in the test set (151 labels). Table 6
presents these results. A breakdown of results by label in terms of true
ositives, false positives, false negatives, precision, recall, and F1-score
s provided in Appendix A.

The model performs best when limited to the 100 most frequent
labels in the training set, where these labels are well-represented,
leading to stronger predictive outcomes. The results for the 95 less
frequent labels, though challenging, are also noteworthy; among these,
only 34 labels appear in the test set, yet the model achieves competitive
performance, demonstrating its adaptability. Lastly, the most insightful
results come from focusing only on labels present in the test set,
providing a fairer assessment by excluding labels absent from the test
et from the computation formulas. This approach avoids the dilution
ffect caused by including labels with no test examples, resulting in
 clearer view of the model’s performance compared to the aggregate
esults shown in Table 5.

4. Terminology mapping and phenotyping queries

4.1. Methods

4.1.1. Methodology for terminology mapping
The input to the terminology mapping stage is the set of UMLS

CUIs assigned to each radiology report by the NLP module. Querying
biomedical reports using various coding systems requires mapping
the extracted UMLS CUIs to these code systems. In the case study
presented, the terminological mapping has been carried out from CUIs
to SNOMED-CT, ICD-10, the Human Phenotype Ontology (HPO), ATC,
LOINC, ICPC2, MSHSPA (MeSH Spanish version), MDRSPA (MedDRA
Spanish version), MedlinePlus, NCI_PI-RADS, NCI_caDSR and Founda-
tional Model of Anatomy (FMA). We reused mappings already available
in the UMLS Metathesaurus. Mappings were retrieved by querying the

MLS terminology service to retrieve the mappings available for each
UIs assigned to each report. When mappings were not available for

a given UMLS CUI, ad hoc mappings were developed by searching in
the online browser of SNOMED International, the definition associated
with each CUI, and selecting the best candidate (see Appendix B).

4.1.2. Methodology for linked knowledge base development
Enabling the execution of phenotyping queries at a computational

level requires a logic model that allows the analysis of relationships
(e.g., equivalence mappings and parent–child relationships) among ter-
minological concepts. Following the methodology described in previous
works [38], we developed a SNOMED-CT model expressed in RDF(S).
n compliance with ontology design patterns [39], this model provided

a logic underpinning (i.e., the main taxonomy) to which concepts
from other terminologies were mapped. This implies that the resulting
ontology will rely on the organization of SNOMED-CT’s polyhierarchy,
and concepts from other terminologies will be attached to the correct
level of it using equivalence axioms between each concept and its
SNOMED-CT equivalent. When a mapping was available, UMLS CUIs
were mapped to SNOMED-CT using OWL (Web Ontology Language)

axioms. Similarly, all the other concepts from different terminologies
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Table 3
Hyperparameters of each run. The rest of the parameters do not vary (num_attention_heads = 12; num_hidden_layers = 12; hidden_act = gelu;
hidden_size = 768; intermediate_size = 3072; max_position_embeddings = 514).
Parameter run-1 run-2 run-3 run-4 run-5

hidden_dropout 0.0943 0.0812 0.0592 0.0843 0.0515
attention_probs_dropout 0.0501 0.0530 0.0936 0.0704 0.0662
num_train_epochs 126 142 139 145 143
learning_rate 9.9078e−5 3.3736e−5 6.1254e−5 6.8333e−5 2.2627e−5
batch_size 32 16 32 32 32
weight_decay 0.0011 0.0057 0.0010 0.0094 0.0034
lr_scheduler_type linear linear linear linear linear
Fig. 3. Evolution of performance metrics (micro and macro averaged) as a function of label frequency. Labels are ordered according to frequency in the training set, showing
model performance across high- and low-frequency classes.
Table 4
Macro averaged results of the best epoch of the five runs on the validation set in terms
of Precision, Recall, and F1-score. The total number of labels in the validation set is
1,847.

Run Best Epoch Precision Recall F1-score Support

run-1 37 0.7006 0.6939 0.6918 1,847
run-2 85 0.7125 0.6993 0.6983 1,847
run-3 94 0.7193 0.6948 0.6996 1,847
run-4 45 0.7098 0.6933 0.6949 1,847
run-5 61 0.7065 0.6896 0.6905 1,847

Table 5
Overall results on the test set, showing micro, macro and weighted averages for
Precision, Recall, and F1-score. The total number of labels in the test set is 1,849.
Macro averaged measures obtained by averaging on the whole set of 195 labels which
appeared in the training partition.

Precision Recall F1-score Support

Micro averaging 0.956 0.945 0.950 1,849
Macro averaging 0.706 0.688 0.691 1,849
Weighted averaging 0.957 0.945 0.949 1,849
7 
were mapped to their corresponding UMLS CUI. This chain of equiv-
alence relationships allowed the triple store DB to reason transitively,
determining equivalences among concepts even when they were not di-
rectly linked. All the axioms and properties of the model were expressed
following Linked Data Principles for scalability and interoperability rea-
sons. Thus, the knowledge graph developed forms a LKB, which allows
for reasoning over the relationships and axioms defined [38]. SNOMED-
CT was chosen as the central reference ontology (and hierarchical
logic model) to structure the LKB because it has extensive coverage
of clinical concepts and an underlying machine-understandable logical
model, which other terminologies lack. A representation in lightweight
semantics (RDF(S)) was chosen over more expressive logics (e.g., OWL-
DL) because it is computationally lighter and more compatible with
graph databases and triple stores. The LKB was deployed in a triple
store DB (Graph DB version 10.1), which supported expressive queries
in SPARQL language. Fig. 4 shows the results of the terminology
mapping and phenotyping queries executed.

Beyond biomedical ontologies, three other ontologies were used to
build the LKB: the Dublin Core (DC), schema.org, and the Minimal
Service Model (MSM). The Dublin Core Metadata Initiative (DCMI)
(www.dublincore.org/) is an international project currently part of
ASIS&T. It focuses on developing best practices and ontologies for the

http://www.dublincore.org/
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Table 6
Performance on the test set for different subsets of labels, divided into high-frequency and low-frequency groups. The table presents Precision,
Recall, and F1 scores, for micro and macro averaging. The high-frequency label group contains 1,815 labels, while the low-frequency group
contains 34 labels, offering a detailed view of model performance across varying label frequencies. The total number of labels in the test
set is 1,849. Macro averaged measures for high- and low-frequency labels were obtained by averaging on the whole set of 195 labels which
appeared in the training partition. Macro averaged measures for all test labels were obtained by averaging on the reduced set of 151 labels
which appeared in the test partition.
Label Set Averaging Type Precision Recall F1-score Support

100 Most Frequent in Training Micro averaging 0.957 0.947 0.952 1,815
Macro averaging 0.885 0.863 0.866 1,815

Remaining Labels in Training Micro averaging 0.935 0.853 0.892 34
Macro averaging 0.349 0.338 0.341 34

Test Labels Micro averaging 0.958 0.945 0.951 1,849
Macro averaging 0.912 0.889 0.892 1,849
Fig. 4. Terminology mapping and ontology development of the Linked Knowledge Base.
specification of metadata about physical or online resources. Its devel-
opments have become the de facto standard for catalogers and open
government data publication. Schema.org is a collaborative community
promoted by private actors such as Google, Yahoo, Microsoft, and
Yandex. Since 2011, schema.org has gained momentum for improving
semantic searches on the internet. While the DC provides more abstract
ontologies to attach metadata, schema.org has expanded to specific
domains such as medicine. In our developments, we prioritized the use
of DC because it is more established and aligned with standardization
organizations such as W3C. When DC concepts did not suffice to rep-
resent the metadata about reports, we used concepts from schema.org.
A different ontology used in the design of the LKB is MSM. Its nature
differs from the DC and schema.org in that it is not intended to specify
resources metadata but to provide a link between Web services and
the ontological specification of an LKB. Therefore, its concepts were
used to specify what a report is and ‘glue’ the ontology developed using
SNOMED-CT to metadata expressed with DC and schema.org specifying
which Web services expose these reports.
8 
4.2. Results

Fig. 4 depicts the stages regarding terminology mapping (see 2)
and ontology development to create the LKB (see 3). As explained in
previous sections, the output of the NLP stage was the set of UMLS CUIs
to which the text segments were classified.

In the second stage (2), CUIs were mapped to SNOMED-CT, ICD-
10, Human Phenotype Ontology (HPO), ATC, LOINC, ICPC2, MSHSPA
(MeSH Spanish version), MDRSPA (MedDRA Spanish version), Medline-
Plus, NCI PI-RADS, NCI caDSR, and Foundational Model of Anatomy
(FMA). The release of SNOMED-CT selected was the US version. While
the choice of the US version may seem counterintuitive, it was mo-
tivated by the fact that the coverage of mappings between UMLS
CUIs and concepts from the SNOMED-CT US version is higher than
in the Spanish version. For example, at the moment of writing, the
CUI C1709576 has a mapping in SNOMED-CT US to ‘‘Mass of pleura’’
(SCTID=540881000124100), but there is no mapping available to the
Spanish version (SCTSPA) in UMLS. Note that this choice on the
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SNOMED-CT version does not affect NLP performance because NLP,
s described in Section 3, is only mapped to CUIs. The coverage
f mappings for SNOMED-CT was the following. The Chest+COVID
ataset contains a total of 299 concepts. Of these, 245 (81.9%) had been

assigned a UMLS CUI, and of these 245, 177 (72.24%) had a mapping
from UMLS CUI to SNOMED-CT available at UMLS terminology service.
The remaining 68 had no mapping available to SNOMED-CT (27.75%).
Of these 68, 54 could be mapped ad hoc to one SNOMED-CT US con-
ept, eight had to be mapped to a more general concept in SNOMED-CT,
our required postcoordination to express their semantics, and two did
ot have a candidate nor could they be expressed using postcoordi-
ation. Those requiring postcoordination for the anatomical qualifier
ere implemented with the pattern described in the following sections.
on-anatomical qualifiers for these two concepts were disregarded.
eyond SNOMED-CT, concepts were mapped to more domain-specific
erminologies when applicable. Specifically, 18 concepts were mapped
o ICD-10, 49 were mapped to HPO, 35 were mapped to ICPC-2, 63
ere mapped to MDRSPA, 18 were mapped to MEDLINEPLUS, 69 terms
ere mapped to FMA. The remaining terminologies were included
ut had no mapping from Chest+COVID (ATC, LOINC, NCI PI-RADS,
aDSR). The reason is that BIMCV also includes images captured by
ther methods and body parts, such as those related to prostate cancer.

After terminology mapping (2), it is possible to identify equivalent
terms to implement phenotyping queries. However, it is not possible to
reason over the mappings to, for example, deal with is-a (subsumption)
relationships among concepts querying for a given concept and letting
the DB to retrieve all the children of that concept. To tackle this
issue, Fig. 4 shows in (3) how the resulting LKB formalizes all the
relationships among the terminologies supported. First, the SNOMED-
CT lite RDF(S) (see white ellipses in Fig. 4) version was generated
to have a complete and sound organization of clinical concepts with
a formal logic model that allows for reasoning in a triple store DB.
Second, all terminology mappings produced in (2) were processed.
An owl:equivalentClass axiom was produced for each mapping, relating
equivalent concepts among the terminologies supported. Fig. 4 repre-
sents HPO concepts with gray hexagons, FMA concepts with yellow
hexagons, and UMLS concepts with blue rectangles. For each report,
a relationship lkb:referencesLocationConcept was produced, linking each
report to the anatomical locations it references. The development of
this relationship is a decision aiming for interoperability among triple
stores DBs. Although the SNOMED-CT concept model allows qualify-
ing anatomical locators using postcoordinated expressions, that would
constrain the set of triple stores that could be used to process these
expressions. Hence, we opted to model references to anatomical loca-
tions with an explicit relationship. The phenotyping queries developed
in SPARQL code are available in Appendix C. Fig. 4 shows an excerpt of
he LKB to explain how the DB reasons over the LKB to answer Query

1 and Query 2 from Table 7.
The execution of Query 1 ‘‘retrieve all radiologic reports that contain

 Pleural effusion in the left lung’’ in Fig. 4 is depicted by highlighting
n green the properties and OWL axioms analyzed. Query 1 uses the

HPO concept HP:0002202 (Pleural effusion), which is equivalent to the
concept C0032227 (Pleural effusion) in UMLS. By analyzing this equiva-
lence relationship, the DB will determine that the concept HP:0002202
(Pleural effusion) is indirectly referenced by the report with identifier
4991845 through the referencesConcept relationship of concept UMLS:
C0032227. With regards to the location of the finding (i.e., left lung),
the DB will infer that the concept in SNOMED-CT 44029006 (Left lung
structure) is equivalent to the FMA concept 7310 (Left Lung) (referenced
in the query) by transitively analyzing the equivalences of UMLS:
C0225730. In addition, the DB will determine by subsumption that
SNOMED-CT 41224006 is also an FMA:7310 (concept referenced in
the query). Since SNOMED-CT 41224006 is referenced by the report
through the referencesLocationConcept property in UMLS: C0225749
(Structure of posterior basal segment of the left lobe of the lung), the
report will be eligible to be returned as a query result. In this way, both
9 
the finding and the anatomical location referenced in the query will be
onsidered, and the report identifier 4765778 will be returned.

Fig. 4 shows the execution of Query 2: ‘‘Retrieve those images where it
is observed a radiologic infiltrate in a bronchopulmonary segment structure’’.
The figure depicts the properties and OWL axioms analyzed with blue
arrows to determine the query results. To answer this query, the triple
store DB reasons over the LKB determining that the concept in the
HPO HP:0002113 (radiologic infiltrate) is equivalent to UMLS concept
C1265599 which, in turn, is referenced by the radiology report with
identifier 4765778. Additionally, it determines the valid locations for
the concept radiologic infiltrate by: (a) analyzing that the SNOMED-
CT concept 46148009 (Structure of posterior basal segment of the left
lower lobe of the lung) is a subClassOf SNOMED-CT 72674008 Bron-
chopulmonary segment structure; and, (b) analyzing that 46148009 is
equivalentTo C0225749 which is directly referenced by the report with
identifier 4765778.

Fig. 5 depicts the architecture used to execute queries. Stage I
represents the NLP processing and ontology development, resulting
in the LKB stored as a graph in the triple store. Stage II represents
executing a query over the triple store to retrieve a report. Specifically,
the clinical data scientist on top of Fig. 5 types a query using the
PARQL language to retrieve the radiologic reports referencing the
isorder ‘‘pleural effusion’’ and the anatomical location ‘‘left lung’’ (see
HERE section of the query). As explained previously, the triple store

Graph database) executes the query transitively, analyzing all the
elationships in the LKB. The report that complies with the phenotyping
riteria is then returned to the user.

The LKB developed aims to go beyond the design of an ad-hoc
knowledge graph by maximizing its interoperability and ontology
reuse [39]. This was achieved by not only committing to biomed-
cal ontologies but to general metadata ontologies. Specifically, we

reused concepts from schema.org [40], the Dublin Core [41] and the
inimal Service Model [42]. From schema.org MedicalProcedure was

subclassed to specify the Report concept, MedicalStudy to identify the
specific study responsible for eliciting this report, and Patient to model
patients metadata such as pseudonym, age, and gender. ImageObject to
model DICOM image metadata. MSM was used to link the ontological
efinition of clinical and report-related concepts (study, patient etc.) to

the syntactic layer of the Web service, specifying where the endpoint is
nd the message produced by the Web service. Dublin Core was used for

metadata location such as provenance, data set creator, etc. The design
ased on ontology reuse and Linked Data facilitates the compliance
ith Findability, Accessibility, Interoperability, and Reusability (FAIR)
rinciples [43] and Open Science [44] by allowing the publication,
iscovery, and exploration of the LKB by computers.

5. Discussion

5.1. NLP and transformer-based models

There are several studies making use of transformers for NLP on
clinical text. EHR text may lead to different performances than med-
cal literature or general language when using transformers. In [45],

the authors evaluated word embeddings trained from different types
of corpora (EHR, medical literature, Wikipedia, and news). In their
results, clinical notes from the EHR and medical literature captured
the semantics of medical terms in the way closest to human judg-
ment. In [46], the authors proposed a framework as a preliminary
step to understand textual spatial semantics in chest X-ray reports. In
their framework, common radiological entities tied to spatial relations
are encoded through four spatial roles: trajector, landmark, diagnosis,
and hedge, all identified in relation to a spatial preposition (or spa-
tial indicator). Their study used bidirectional long-short term memory
(Bi-LSTM) as a base model and compared it with two models using
transformers (BERT and XLNet). The best-performing models were both

XLNet and BERT, pre-trained with the medical dataset MIMIC-III. A
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Table 7
List of phenotyping queries implemented with their description, terminologies used and type of reasoning to find query results. See C for SPARQL implementation.
Query id Text definition Reasoning

Query 1 Retrieve all radiologic images that contain a Pleural effusion in the
left lung

Subsumption over SNOMED-CT, equivalence among HPO, UMLS,
SNOMED-CT and FMA

Query 2 Retrieve those images where it is observed a radiologic infiltrate in
a bronchopulmonary segment structure

Subsumption over SNOMED-CT, equivalence among HPO, UMLS
and SNOMED-CT

Query 3 Retrieve patients with widened mediastinum Subsumption over SNOMED-CT, equivalence between UMLS and
SNOMED-CT

Query 4 Retrieve all reports with any radiology finding observed in the
mediastinal area

Subsumption over SNOMED-CT, equivalence between UMLS and
SNOMED-CT

Query 5 Retrieves all images that have some type of catheter Subsumption over SNOMED-CT, equivalence between UMLS and
SNOMED-CT

Query 6 Retrieves all images where fractures are observed in the shoulder
region

Subsumption over SNOMED-CT, equivalence among FMA, UMLS
and SNOMED-CT

Query 7 recover images with multiple nodules and pseudonodules Subsumption over SNOMED-CT, equivalence among HPO, UMLS
and SNOMED-CT

Query 8 Recover images with a finding of atelectasis Subsumption over SNOMED-CT, equivalence among ICD-10, UMLS,
SNOMED-CT
o
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subdomain that has received lots of attention is the processing of
ree text medication orders. In [47], GloVe word vectors trained from
IMIC III were used, and four models for supervised classification
ere tested (Multinomial Naive Bayes, Decision Trees, Support Vector
achines, and CRFs). In a second step, the medication items (dosage,
ode, frequency etc.) were extracted. Multi-label CRF was selected as

he optimal method for medication information extraction. Their work
id not perform terminology matching for phenotyping.

Several works have worked in NLP on pathology reports to identify
ocation and morphology of tumors. Oleynic et al. [48] used Support
ector Machines to classify pathology reports into ICD-O. Mitchel
t al. [49] proposed a 3-stage method for processing pathology reports.
n the first stage, they created a pathology language model using
ioBERT and a subset of MIMIC III concerning discharge summaries. In
he second stage, they used SQuAD and BioASQ datasets to train a ques-
ion answering model that could retrieve the organs containing a tumor
nd the kind of tumor. In the third stage, they trained 2 additional
odels to predict the ICD-O-3 codes that corresponded to the location

nd type of tumor retrieved in the second stage. Our methodology has
ot used question answering models such as SQuAD. A relevant future
ork is the comparison of the performance of these methods with ours

o map to UMLS CUIs. Also, in the pathology domain, Rios et al. [50]
sed a neural multi-task training with hierarchical regularization to
rocess pathology reports to integrate concept embeddings into the

ICD-O-3 hierarchy. This technique could be used in our pipeline to
automatically process concepts without SNOMED-CT mapping in UMLS
and link them to the correct concept in the SNOMED-CT hierarchy.

Coutinho and Martins [11] used BERT-based models to map causes
f death from death certificates in Portuguese into their correspond-

ing ICD-10 codes. Their work used a BERT model trained on the
Brazilian Wikipedia data and the brWac dataset. Adjustment of pa-
rameters to clinical text was made with self-supervised pre-training
tasks. The authors used a novel pre-training procedure that incorporates
in-domain knowledge, and also a fine-tuning method to address the
class imbalance issue. Experimental results show that, in this particular
linical task that requires the processing of relatively short documents,
ransformer-based models can achieve very competitive results. This
ork presents quite a few similarities with the part of our work

hat performs the labeling from the free text of the EHRs. There are
also recent works based on different machine learning methods to
obtain classifiers. López-Úbeda and colleagues [51] develop a text
lassification system based on NLP in order to automatically assign
ne protocol to each radiological request form prescribed by reference
hysicians. For this task they used two training Spanish corpora. Olthof

and colleagues [52] classify radiology reports in orthopedic trauma for
 f

10 
the presence of injuries. They used a dataset of Dutch radiology reports
of injured extremities and a dataset of chest radiographs.

Another feature of our study is using transformers on a Spanish
clinical corpus. Most of the studies mentioned were done in English
on similar corpora (e.g. MIMIC III, Medical literature, UW Dataset).
Our study demonstrates that transformer-based methods can be ap-
plied to other languages, such as Spanish, while maintaining a good
performance.

5.2. Linked knowledge base design

Concerning the design of the LKB, a first difference in the treatment
f relationships between concepts can be found between our study and

Datta et al. [46]. Datta and colleagues focused on identifying spatial
elationships, but terminology linkage still needed to be performed.
n our study, we did not perform spatial relationship analysis at the
LP stage. However, we dealt with anatomical locations by mapping

hem to FMA and SNOMED-CT, thus allowing for reasoning over
artonomies. For example, if a phenotyping query asks for the radiol-
gy reports that mentioned any fracture in the region of the shoulder;
eports mentioning fractures in the acromioclavicular joint, rotator cuff,
upraspisnous humeral head, humeral neck and so on, will be retrieved.
he reason is that these concepts are related by is-a (rdfs:SubClassOf)
elationships with the shoulder region structure (16982005). Another
esign decision that differs from other works is the specification of
he semantics regarding clinical findings and anatomical locations
sing lkb:referencesConcept and lkb:referencesLocationConcept relation-
hips, respectively. In many cases, only the former may be needed since
he clinical finding hierarchy (404684003) in SNOMED-CT contains

precoordinated terms that directly relate the finding and the anatom-
cal location (e.g., 445249002 | Multiple nodules of lung (disorder)).
owever, there are cases where a precoordinated term specifying
oth the clinical finding and the anatomical location is unavailable.
 possible approach to this may be using the postcoordination mech-

anism provided by SNOMED-CT. However, this may hamper inter-
perability. While some reasoners perform well in classifying post-
oordinated concepts [53], not all of them support the semantics

derived from postcoordinated constructs. In our design, we adopted
a more flexible approach where the anatomical location in the find-
ing can be expressed by: (a) directly referencing a precoordinated
oncept with anatomical location (lkb:referencesConcept); or (b) using
he relationship lkb:referencesLocationConcept to specify the anatom-
cal location. This improves interoperability across triple stores and
acilitates mapping to domain-specific terminologies such as the FMA
ollowing Linked Data principles. Other studies have explored using
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Fig. 5. Query architecture on the graph Data Base.
Linked Data to increase the interoperability of data reuse frameworks
such as OHDSI [54]. However, the use of Linked Data was focused on
mappings from the internal terminologies of the framework to more
interoperable ones such as UMLS and HPO. Conversely, our work
focused on direct ontology learning from free text, focusing on the
11 
accuracy and correct taxonomic classification of the identified entities.
Also, Banda et al. [55] used Machine Learning to learn phenotypes from
imperfect labeled data, but it was done by reading over the OHDSI
CDM v5 structured model rather than free text. They constrained the
XPRESS model [56] to operate only over standard terms rather than
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free text [55]. The work closest to ours in terms of mapping text
o an ontology is the study of Hammami et al. [34], which used a
ule-based system to map pathology reports in Italian to the Interna-
ional Classification of Diseases for Oncology (ICD-O-M). Hammami

and colleagues dealt with classifying concepts into the ICD-O-M using
rules to prioritize morphology descriptions. However, the ontology
produced was not formalized into a logic model allowing the execution
of phenotyping queries.

5.3. Limitations

Our method allows us to process free text notes directly and de-
fine phenotypes to filter radiology reports using various terminologies.
However, phenotypes are as diverse as the natural language contained
n reports, and our methods have several limitations regarding the
xpressivity they can achieve.

First, Deep Phenotyping requires not only the specification of clin-
ical concepts but also the interpretation of temporal constraints and
demographic data in free text. Our methodology does not deal with
these features. That challenge would require the development of tem-
poral NLP models in addition to the ones presented [57], which remain
s future work.

Second, the methods presented are not a complete clinical research
latform such as i2b2 or OHDSI that can define more precise phe-

notypes (e.g., with temporal constraints) at the expense of intensive
ETL and data curation efforts. Instead, the methodology presented is
intended to query large volumes of clinical reports for assigning them
to clinical studies with minimum ETL efforts. Once radiology reports
have been retrieved by running phenotyping queries with the patterns
presented, each study can decide to normalize clinical report data
further into clinical research platforms for further analysis.

Third, our methodology alleviates most of the effort in ETL tasks.
However, the functionality of our method is limited to answering
queries for detecting clinical reports with the patterns specified. That
is, the phenotyping criteria that can be processed are limited by the
completeness of the LKB in expressing the contents of free text reports.
Dealing with more expressive criteria would require the NLP pipeline
to be enhanced to detect more complex relationships and then translate
those to the LKB as logic constructs. Nevertheless, the management
of clinical reports and the phenotyping queries supported suffice the
needs of BIMCV regarding indexing and fast processing of reports. This
is aligned with the findings of Sholle et al. [58], who reported that
only 15% of phenotyping queries required more than three conditions
or custom temporal constraints. Hence, we believe our method can be
reliably used directly in various use cases, such as image and pathology
banks, as long as representative corpora are developed.

Finally, including more domain-specific terminologies, such as
RadLex [59], can enhance interoperability and cross-terminological
henotyping queries. However, in the context of public healthcare in
pain, RadLex is not used. Thus, its adoption remains as future work.

6. Conclusions

EHRs contain large amounts of free text. This study presented a
ethodology that leverages the use of transformer-based NLP meth-

ds with Linked Data Technologies to enable Deep Phenotyping on
linical reports. Our phenotyping system was evaluated on the Span-
sh Chest+COVID dataset showing state-of-the-art results for the NLP
ask and effectively supporting expressive phenotyping queries. The
erformance of the multi-label classification module was very satisfac-
ory to reinforce Deep Phenotyping, achieving a micro averaging of
.950, a macro averaging of 0.691, and a weighted average of 0.949.
o answer Deep Phenotyping queries, 12 terminologies were mapped
nd expressed in compliance with Linked Data principles as a LKB
12 
that effectively processed equivalence and subsumption relationships.
Subsequent work will involve incorporating temporal evolution into the
NLP module and extending our NLP-LKB system to other domains. Ad-
ditionally, it would be interesting to have a gold standard to carry out
a quantitative and qualitative analysis of the benefits of the complete
system. The results could show, for example, the relationship between
the errors in the labeling phase from the medical reports in terms of the

UIs labels and the results of the phenotyping queries. The study also
otes the rising interest in cross-lingual knowledge transfer strategies
or low-resource languages [60–62] and in Biomedical or Medical entity

linking [63–65], with an exploration of these strategies identified as a
direction for future work.

Finally, Chest+COVID is a publicly open dataset, and our intention
s to make the corpus publicly available to adhere to FAIR princi-
les [43]. This step aligns with EU recommendations on Open Sci-

ence [44] by indexing our results in the European Open Science Cloud
and the Linking Open Data Cloud.
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Appendix A. Experimental results

Results for each label on the Test set, in terms of true positives
tp), false positives (fp), false negatives (fn), Precision (P), Recall (R),

F1-score, and Support (S).
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Label tp fp fn P R F1 S
normal 168 5 8 0.971 0.955 0.963 176
unchanged 125 3 4 0.977 0.969 0.973 129
exclude 95 10 14 0.905 0.872 0.888 109
pneumonia 78 7 2 0.918 0.975 0.945 80
interstitial pattern 71 1 1 0.986 0.986 0.986 72
pleural effusion 67 1 1 0.985 0.985 0.985 68
alveolar pattern 60 1 1 0.984 0.984 0.984 61
infiltrates 44 3 2 0.936 0.957 0.946 46
costophrenic angle blunting 44 2 0 0.957 1.000 0.978 44
laminar atelectasis 41 0 0 1.000 1.000 1.000 41
atelectasis 36 0 1 1.000 0.973 0.986 37
chronic changes 34 0 0 1.000 1.000 1.000 34
callus rib fracture 30 0 1 1.000 0.968 0.984 31
increased density 25 3 6 0.893 0.806 0.847 31
cardiomegaly 27 0 1 1.000 0.964 0.982 28
pseudonodule 26 0 1 1.000 0.963 0.981 27
vertebral degenerative changes 25 0 2 1.000 0.926 0.962 27
nodule 23 2 3 0.920 0.885 0.902 26
scoliosis 26 0 0 1.000 1.000 1.000 26
COPD signs 22 1 1 0.957 0.957 0.957 23
calcified granuloma 23 1 0 0.958 1.000 0.979 23
heart insufficiency 21 0 1 1.000 0.955 0.977 22
volume loss 22 1 0 0.957 1.000 0.978 22
consolidation 19 2 2 0.905 0.905 0.905 21
vascular hilar enlargement 19 1 1 0.950 0.950 0.950 20
air trapping 18 0 1 1.000 0.947 0.973 19
bronchovascular markings 18 2 0 0.900 1.000 0.947 18
suboptimal study 15 1 3 0.938 0.833 0.882 18
apical pleural thickening 17 2 0 0.895 1.000 0.944 17
fibrotic band 16 0 1 1.000 0.941 0.970 17
kyphosis 16 2 0 0.889 1.000 0.941 16
bronchiectasis 15 0 0 1.000 1.000 1.000 15
COVID 19 14 1 0 0.933 1.000 0.966 14
aortic elongation 14 0 0 1.000 1.000 1.000 14
nipple shadow 14 0 0 1.000 1.000 1.000 14
pacemaker 13 0 0 1.000 1.000 1.000 13
suture material 12 1 1 0.923 0.923 0.923 13
vertebral anterior compression 13 2 0 0.867 1.000 0.929 13
hemidiaphragm elevation 11 2 1 0.846 0.917 0.880 12
NSG tube 10 1 1 0.909 0.909 0.909 11
aortic atheromatosis 8 0 2 1.000 0.800 0.889 10
calcified densities 9 0 1 1.000 0.900 0.947 10
emphysema 10 1 0 0.909 1.000 0.952 10
endotracheal tube 10 0 0 1.000 1.000 1.000 10
hilar congestion 10 0 0 1.000 1.000 1.000 10
hilar enlargement 8 0 2 1.000 0.800 0.889 10
granuloma 9 1 0 0.900 1.000 0.947 9
flattened diaphragm 8 0 0 1.000 1.000 1.000 8
goiter 7 0 1 1.000 0.875 0.933 8
ground glass pattern 8 0 0 1.000 1.000 1.000 8
osteosynthesis material 8 0 0 1.000 1.000 1.000 8
superior mediastinal enlargement 8 0 0 1.000 1.000 1.000 8
13 
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adenopathy 7 0 0 1.000 1.000 1.000 7
central venous catheter via jugular vein 7 0 0 1.000 1.000 1.000 7
mediastinic lipomatosis 6 0 1 1.000 0.857 0.923 7
metal 7 1 0 0.875 1.000 0.933 7
pneumothorax 7 0 0 1.000 1.000 1.000 7
rib fracture 7 0 0 1.000 1.000 1.000 7
vertebral compression 6 0 1 1.000 0.857 0.923 7
dai 5 1 1 0.833 0.833 0.833 6
diaphragmatic eventration 5 0 1 1.000 0.833 0.909 6
dual chamber device 6 1 0 0.857 1.000 0.923 6
lobar atelectasis 6 0 0 1.000 1.000 1.000 6
multiple nodules 4 1 2 0.800 0.667 0.727 6
surgery breast 6 0 0 1.000 1.000 1.000 6
tracheal shift 6 0 0 1.000 1.000 1.000 6
COVID 19 uncertain 3 0 2 1.000 0.600 0.750 5
aortic button enlargement 4 0 1 1.000 0.800 0.889 5
bullas 5 0 0 1.000 1.000 1.000 5
hiatal hernia 5 1 0 0.833 1.000 0.909 5
mediastinal enlargement 4 0 1 1.000 0.800 0.889 5
reservoir central venous catheter 5 0 0 1.000 1.000 1.000 5
sternotomy 4 0 1 1.000 0.800 0.889 5
supra aortic elongation 5 1 0 0.833 1.000 0.909 5
tuberculosis sequelae 5 1 0 0.833 1.000 0.909 5
vascular redistribution 5 0 0 1.000 1.000 1.000 5
atypical pneumonia 4 0 0 1.000 1.000 1.000 4
bone metastasis 2 0 2 1.000 0.500 0.667 4
calcified pleural thickening 4 0 0 1.000 1.000 1.000 4
cavitation 4 0 0 1.000 1.000 1.000 4
clavicle fracture 4 0 0 1.000 1.000 1.000 4
humeral fracture 3 0 1 1.000 0.750 0.857 4
lung metastasis 3 0 1 1.000 0.750 0.857 4
lung vascular paucity 2 0 2 1.000 0.500 0.667 4
mastectomy 4 0 0 1.000 1.000 1.000 4
osteoporosis 4 0 0 1.000 1.000 1.000 4
sclerotic bone lesion 4 1 0 0.800 1.000 0.889 4
single chamber device 4 0 0 1.000 1.000 1.000 4
vertebral fracture 3 0 1 1.000 0.750 0.857 4
ascendent aortic elongation 2 1 1 0.667 0.667 0.667 3
axial hyperostosis 2 0 1 1.000 0.667 0.800 3
central venous catheter 3 0 0 1.000 1.000 1.000 3
chest drain tube 3 0 0 1.000 1.000 1.000 3
end on vessel 2 0 1 1.000 0.667 0.800 3
loculated pleural effusion 2 0 1 1.000 0.667 0.800 3
miliary opacities 3 1 0 0.750 1.000 0.857 3
pleural thickening 3 1 0 0.750 1.000 0.857 3
pulmonary edema 3 0 0 1.000 1.000 1.000 3
pulmonary mass 2 1 1 0.667 0.667 0.667 3
surgery lung 1 0 2 1.000 0.333 0.500 3
surgery neck 3 0 0 1.000 1.000 1.000 3
abnormal foreign body 2 0 0 1.000 1.000 1.000 2
air bronchogram 2 0 0 1.000 1.000 1.000 2
azygoesophageal recess shift 2 1 0 0.667 1.000 0.800 2
blastic bone lesion 1 0 1 1.000 0.500 0.667 2
costochondral junction hypertrophy 2 0 0 1.000 1.000 1.000 2
hypoexpansion 2 0 0 1.000 1.000 1.000 2
lytic bone lesion 2 0 0 1.000 1.000 1.000 2
major fissure thickening 2 0 0 1.000 1.000 1.000 2
minor fissure thickening 2 0 0 1.000 1.000 1.000 2
osteopenia 2 0 0 1.000 1.000 1.000 2
subacromial space narrowing 2 0 0 1.000 1.000 1.000 2
14 
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subcutaneous emphysema 1 0 1 1.000 0.500 0.667 2
tuberculosis 1 0 1 1.000 0.500 0.667 2
air fluid level 1 0 0 1.000 1.000 1.000 1
artificial aortic heart valve 1 0 0 1.000 1.000 1.000 1
artificial heart valve 1 0 0 1.000 1.000 1.000 1
artificial mitral heart valve 1 0 0 1.000 1.000 1.000 1
atelectasis basal 1 0 0 1.000 1.000 1.000 1
azygos lobe 1 0 0 1.000 1.000 1.000 1
calcified adenopathy 1 1 0 0.500 1.000 0.667 1
calcified fibroadenoma 1 0 0 1.000 1.000 1.000 1
central venous catheter via subclavian vein 1 0 0 1.000 1.000 1.000 1
central venous catheter via umbilical vein 1 0 0 1.000 1.000 1.000 1
descendent aortic elongation 1 0 0 1.000 1.000 1.000 1
endoprosthesis 1 0 0 1.000 1.000 1.000 1
fissure thickening 0 0 1 0.000 0.000 0.000 1
gastrostomy tube 1 0 0 1.000 1.000 1.000 1
gynecomastia 1 0 0 1.000 1.000 1.000 1
heart valve calcified 1 0 0 1.000 1.000 1.000 1
humeral prosthesis 1 0 0 1.000 1.000 1.000 1
hyperinflated lung 1 1 0 0.500 1.000 0.667 1
mammary prosthesis 0 0 1 0.000 0.000 0.000 1
mediastinal mass 0 0 1 0.000 0.000 0.000 1
pectum carinatum 1 0 0 1.000 1.000 1.000 1
pericardial effusion 1 0 0 1.000 1.000 1.000 1
pleural plaques 1 0 0 1.000 1.000 1.000 1
pneumomediastinum 0 0 1 0.000 0.000 0.000 1
pneumoperitoneo 1 0 0 1.000 1.000 1.000 1
post radiotherapy changes 1 0 0 1.000 1.000 1.000 1
prosthesis 1 0 0 1.000 1.000 1.000 1
pulmonary fibrosis 1 0 0 1.000 1.000 1.000 1
pulmonary hypertension 1 0 0 1.000 1.000 1.000 1
respiratory distress 0 0 1 0.000 0.000 0.000 1
reticular interstitial pattern 1 1 0 0.500 1.000 0.667 1
reticulonodular interstitial pattern 0 0 1 0.000 0.000 0.000 1
segmental atelectasis 1 0 0 1.000 1.000 1.000 1
soft tissue mass 1 0 0 1.000 1.000 1.000 1
surgery 0 1 1 0.000 0.000 0.000 1
thoracic cage deformation 1 0 0 1.000 1.000 1.000 1
ventriculoperitoneal drain tube 1 0 0 1.000 1.000 1.000 1
non axial articular degenerative changes 0 2 0 0.000 0.000 0.000 0
Chilaiditi sign 0 1 0 0.000 0.000 0.000 0
15 
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Appendix B. Ad hoc mappings
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Appendix C. Phenotyping queries

Query 1-Retrieve all radiologic reports that contain a Pleural effusion in the left lung

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sct: <http://www.ehealthresearch.no/2022/snomedct-lite#>
PREFIX umls: <https://uts.nlm.nih.gov/uts/umls/concept/>
PREFIX fma: <http://purl.org/sig/ont/fma/>
PREFIX hp: <http://purl.obolibrary.org/obo/hp#>
SELECT distinct ?report
WHERE {
?report a sct:Report .
?report sct:referencesConcept* ?pleuralEffusion .
?report sct:referencesLocationConcept* ?leftLung .
?leftLung rdfs:subClassOf* fma:7310 .
?pleuralEffusion rdfs:subClassOf* hp:0002113

}

Query 2-Retrieve reports mentioning a pattern of infiltration in a bronchopulmonary segment structure.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sct: <http://www.ehealthresearch.no/2022/snomedct-lite#>
PREFIX umls: <https://uts.nlm.nih.gov/uts/umls/concept/>
17 
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PREFIX hp: <http://purl.obolibrary.org/obo/hp#>
SELECT distinct ?report
WHERE {
?report a sct:Report .
?report sct:referencesConcept* ?radiologicInfiltrate .
?radiologicInfiltrate rdfs:subClassOf* hp:0002113 .#radiologic infiltrate
?report sct:referencesLocationConcept* ?bronchopulmonarySegment .
?bronchopulmonarySegment rdfs:subClassOf* sct:72674008 .#bronshopulmonary segment structure

}

Query 3 - Retrieve patient identifier of patients with a radiological finding related to a Widened mediastinum.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sct: <http://www.ehealthresearch.no/2022/snomedct-lite#>
PREFIX umls: <https://uts.nlm.nih.gov/uts/umls/concept/>
SELECT distinct ?patientId
WHERE {
?report a sct:Report .
?report sct:referencesToPatient ?patientId .
?report sct:referencesConcept* ?widenedMediastinum .
?widenedMediastinum rdfs:subClassOf* sct:363646005 .

}

Query 4 - Retrieve all reports with radiological findings related to the mediastinum

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sct: <http://www.ehealthresearch.no/2022/snomedct-lite#>
PREFIX umls: <https://uts.nlm.nih.gov/uts/umls/concept/>
SELECT distinct ?report ?radiologicFinding
WHERE {
?report a sct:Report .
?report sct:referencesConcept* ?radiologicFinding .
?radiologicFinding rdfs:subClassOf* sct:118247008 .
?report sct:referencesLocationConcept* ?mediastinum .#mediastinum
?mediastinum rdfs:subClassOf* umls:C0025066 .#sct:72410000#

}

Query 5 - Retrieve all radiolofy reports related to images with catheter

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sct: <http://www.ehealthresearch.no/2022/snomedct-lite#>
PREFIX umls: <https://uts.nlm.nih.gov/uts/umls/concept/>
SELECT distinct ?report
WHERE {
?report a sct:Report .
?report sct:referencesConcept* ?catheter .
?catheter rdfs:subClassOf* sct:19923001 .

}

Query 6 - Retrieve reports related to fractures in the region of the shoulder

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sct: <http://www.ehealthresearch.no/2022/snomedct-lite#>
PREFIX umls: <https://uts.nlm.nih.gov/uts/umls/concept/>
PREFIX fma: <http://purl.org/sig/ont/fma/>
SELECT distinct ?report ?fracture
WHERE {

?report a sct:Report .

18 
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?report sct:referencesConcept* ?fracture .
?fracture rdfs:subClassOf* umls:C0016658 .
?report sct:referencesLocationConcept* ?shoulder .
?shoulder rdfs:subClassOf* fma:25202 .

uery 7 - Retrieve patient identifiers where nodules of lung were found

REFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
REFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
REFIX sct: <http://www.ehealthresearch.no/2022/snomedct-lite#>
REFIX umls: <https://uts.nlm.nih.gov/uts/umls/concept/>
REFIX fma: <http://purl.org/sig/ont/fma/>
REFIX icd10: <http://https://uts-ws.nlm.nih.gov/rest/content/2022AA/source/ICD10AM#>
REFIX hp: <http://purl.obolibrary.org/obo/hp#>

ELECT distinct ?patientId ?nodulesFinding
HERE {
?report a sct:Report .
?report sct:referencesToPatient ?patientId .
?report sct:referencesConcept* ?nodulesFinding .
?nodulesFinding rdfs:subClassOf* hp:0033608 .

uery 8 - Retrieve all reports making references to atelectasis and its subtypes

REFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
REFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
REFIX sct: <http://www.ehealthresearch.no/2022/snomedct-lite#>
REFIX umls: <https://uts.nlm.nih.gov/uts/umls/concept/>
REFIX fma: <http://purl.org/sig/ont/fma/>
REFIX icd10: <http://https://uts-ws.nlm.nih.gov/rest/content/2022AA/source/ICD10AM#>

ELECT distinct ?report ?someTypeOfAtelactasis
HERE {
?report a sct:Report .
?report sct:referencesConcept* ?someTypeOfAtelactasis .
?someTypeOfAtelactasis rdfs:subClassOf* icd10:J98_1 .
19 
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